
'J~N 18 1961 D UGD J S6S 01 67 
Reprinted without change of pagination from the 

Proceedings of the Royal Society, A, volume 287, pp. 381-402, 1965 (p.....) -UIOI 

The effect of pressure and temperature on the electrical 
resistance of rubidium and caesium 
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(Communicated by Sir Nevill Mott, F.R.S.-Received 4 March 1965) 

Measurements have been made of the electrical resistivity of rubidium and caesium at 
temperatures between 1·5 and 300 OK and at pressures up to 3000 atm. From our results 
we have calculated the ideal resistivity and its pressure derivative both at constant pressure 
and at constant density. The results are compared with those of the lighter alkali metals 
and with theoretical predictions. 

1. INTRODUCTION 

In an earlier paper (Dugdale & Gugan 1962)t the effect of pressure on the electrical 
resistance of lithium, sodium and potassium at low temperatures was described. 
In this paper we present comparable results on rubidium and caesium. In this 
way we are able to compare the resistivity of all the alkali metals from low tem
peratures (ca. 2 OK) up to room temperature both at constant pressure (effectively 
zero) and at constant volume. In addition, we are able to compare the volume 
coefficients of resistivity and their dependence on temperature for the whole 
series of alkali metals. 

Except for Bridgman's work and that described in I, most of the previous experi
ments on the resistivity of alkali metals have been done on specimens contained 
in capillary tubes. In the present series of experiments bare wires were used since 
these are essential if accurate measurements under pressure are to be made. As 
Bridgman (1925) has pointed out and as our earlier experience on the lighter 
alkali metals (Dugdale & Gugan 1963) showed, even for measurements of the 
temperature dependence of resistivity capillary specimens are unsatisfactory. This 
is particularly true of rubidium and caesium. Indeed, the thermal contraction of 
caesium is so large relative to glass that in some of the previous experiments in 
which glass capillaries were used the results showed very marked anomalies and 
in extreme cases the specimens became open circuit during cooling or heating. 
In rubidium, too, the anomaly originally found by MacDonald (1952) is almost 
certainly to be ascribed to the fact that the specimens were contained in glass 
capillaries. 

In I it was pointed out that the present theory of eleotrical resistivity could not 
account for the volume dependence of the electrical resistivity of any of the metals 
discussed there. In particular, it was emphasized that even for sodium and 
potassium which appear to approximate well to the free electron model of a 
metal the theory was unsatisfactory. Since then there have been new theoretical 
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calculations which agree rather well with experiment for these two metals and these 
calculations will be referred to later when we discuss our results on rubidium 
and caesium. 

2. EXPERIMENTAL 

The experimental techniques of measurement were essentially similar to those 
already described or referred to in 1. Measurements were made of the resistance 
of the specimens as a function of temperature between ca. 2 and 300 oK at effectively 
zero pressure. In a second apparatus the pressure dependence was measured in a 
similar temperature range. The pressure transmitting medium was helium: in its 
fluid form at the higher temperatures and in the solid phase at the lowest tem
peratures. The pressure range was up to 3000 atm. 

The main differences from the earlier experimental techniques were in the 
preparation and mounting of the specimens. Beca.use rubidium and caesium, 
particularly the latter, are highly reactive metals which ignite spontaneously in 
a humid atmosphere the handling of the specimens had to be carried out either in 
a vacuum or in a dry box with an inert gas atmosphere. 

The specimens consisted of wires about 40 cm long and 1 mm in diameter wound 
on a former similar to that described by Dugdale & Gugan (1960). The metal was 
removed from its original glass capsule and melted into an extruding cell under 
vacuum of the order of 10- 5 to 10-6 mmHg. The cell was then transferred into a 
stainless steel dry box of the conventional type, filled with clean dry helium. The 
metal wire was extruded into dry transformer oil, at about - 5 °0, under which it 
was wound onto the former; the former was then mounted on the apparatus, the 
excess oil brushed off with a fine artist's brush and the high pressure vessel 
screwed on. The whole was then transferred from the dry box to the cryostat, the 
high pressure connexions were made and the cryostat was then filled with liquid 
nitrogen. 

During the experiments we had some trouble with oxidation of the specimens. 
In general high pressures seem to inhibit this effect and we found it safest at 
temperatures above about 180 OK to keep a pressure of at least 100 atm on the speci
mens in the high pressure apparatus. This was also experimentally convenient 
although it had the disadvantage that we had to obtain the zero pressure value of 
the resistance for each pressure run by extrapolation. In one of our experiments 
on caesium near room temperature we found the' transition' reported by Bridgman 
(1923) which occurs when a specimen becomes appreciably oxidized. This shows up 
as a step in the resistivity-pressure curve at temperatures near 0 °0 and is pre
sumably related to the change with pressure of the eutectic temperature of the 
caesium oxide-caesium metal system. If the specimen is not contaminated, a 
smooth dependence of resistance on pressure is found with only slight effects due 
to oxidation. 

In the low pressure apparatus we had similar problems. At temperatures above 
140 OK in the case of rubidium (specimen 4) and 180 OK in the case of caesium 
(specimen 2) we found that the resistance of the specimen increased slowly while 
the temperature was kept constant. We attributed this to oxidation at the surface 
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of the specimens, and to improve the accuracy of the measurements in this region 
we rapidly cooled the specimens after each reading to a low temperature at which 
no reaction could occur. By measuring the resistance at this low temperature and 
comparing it with its previous value we were able to make a correction for the 
change in shape factor of the specimen. Any oxidation of the specimen during 
cooling was, we believe, negligible compared with that during the slow warming up. 

2·1. The specimens 

Details of the various specimens used are summarized in tables 1 and 2. The 
rubidium for specimen Rb (5) was distilled in this laboratory in order to reduce its 
residual resistivity. The distillation was carried out in three stages in a quartz 
apparatus specially designed for the purpose. The first and third fractions were 

no. 

1* 

2* 

3* 

6§} 
7§ 
8§ 

no. 

1* 

2t 

3* 

TABLE 1. THE RUBIDIUM SPECIMENS 

source of material 

L . Light and Co. Ltd., 
Colnbrook, England 

resistance ratio 

R?8 = 52 
R402 

R?8 = 54 
R402 

R?8 = 146, R 2?3 = 615 
RH R402 

Rm = 580 
R402 

* High pressure apparatus. 
t Low pressure apparatus. 
t Redistilled in this laboratory. 
§ Used for absolute resistivity measurements. 

TABLE 2. THE CAESIUM SPECIMENS 

source of material 

A.D.Mackay and Co., 
New York 

L. Light and Co. Ltd., 
Colnbrook, England 

resistance ratio 

R?8 = 67 
R402 

R?8 = 74, R 2?3 = 298 
R'.2 R402 

* High pressure apparatus. 
t Low pressure apparatus. 
t Used for absolute resistivity measurements. 

residual 
resistance 

0·00042 il 

0·00037 il 

0·000044il 

residual 
resistance 

0·00029 il 

0·00024il 

0·00025il 
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discarded and only the middle fraction kept. This fraction was then melted into the 
extruding cell and transferred into the glove box in the usual way. Such a distilla
tion improved the resistance ratio of the rubidium by a factor of nearly 5. 

2·2. Absolute values of the resistivity 

To measure the absolute resistivities of rubidium and caesium we extruded a 
wire (2 mm in diameter for rubidium and 3 mm for caesium) under distilled 
paraffin oil. We then put a length of this into a transparent, rigid plastic tube of 
about 3 mm diameter. Next we pushed four platinum electrodes through holes 
in the tube into the wire. These electrodes were used as current and potential leads 
for the measurement of the resistance of the wire. The distance between the 
potential electrodes was determined afterwards from the dista.nce between the 
holes in the plastic tube which held these electrodes. 

To determine the diameter of the wire a known length of it (equal to the total 
length of the plastic tube) was allowed to react with ethyl alcohol. The solution 
formed in this way was then titrated against a standard acid solution to determine 
the amount of metal. From the mass of metal and its density the diameter of the 
wire could then be found. (Dr Z. S. Basinski suggested this method of determining 
the diameter and we are grateful to him for the idea and for carrying out the 
titrations.) The reaction of cold ethyl alcohol with the rubidium was fairly slow 
but with the caesium it was rather fast; fortunately, this did not cause any liquid 
to spill out of the spherical flask which held the alcohol. 

Apart from holding the electrodes and fixing the total length of the specimen, 
the plastic tube also served to keep down the oxidation of the specimens by 
protecting them from the bulk of the oil in the open tank. Chemical reaction in 
the caesium specimens was further reduced by having the oil cool (about 9 °C for 
specimen 6 and about 2°C for specimens 7 and 8) . These precautions seemed 
sufficient since the specimens stayed bright and shiny and their resistance did not 
increase appreciably with time (except for ca.esium specimen 7 which may have 
contained some oxide). The error in the absolute resistivities determined in this 
way is probably about ± 2%. 

3. EXPERIMENTAL RESULTS 

3·1. Absolute resistivity 

Our values of absolute resistivity are compared with those of other observers in 
table 3; it is seen that there are large discrepancies among these values (up to 15 % 
for rubidium). It is clear from Hackspill's (191 0, 1911) account of his experiments 
that they are more reliable than those of Guntz & Broniewski (1909). The measure
ments by MacDonald, White & Woods (1956) of absolute resistivity were incidental 
to their main objective and their methods were not very reliable as they theInselves 
admit in discussing the unreproducible values they found for potassium. Our 
results confirm those of Hackspill and we believe that there is now no serious doubt 
(within ± 2 %) of the values to be adopted for the absolute resistivities of rubidium 
and caesium. 
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3·2. Temperature dependence of resistance 

385 

The results of the resistance measurements obtained with the low pressure 
apparatus are converted into resistivity values in the following way. We first derive 
the ideal resistance, R i , by assuming Matthiessen's rule 

R = Ri+RO' 

Here R is the total measured resistance at any temperature and Rn the limiting 
low temperature value of the resistance. Ri is then assumed to be the resistance 
due to the lattice vibrations. Strictly this relationship should be applied only to 
measurements at constant density but the corrections to Ro due to thermal 
expansion are small enough to be neglected. On the other hand, departures from 
Matthiessen's rule itself could be appreciable at low temperatures, perhaps 10 % of 
Ro at iO. 

metal 

rubidium 

caesium 

TABLE 3. ABSOLUTE RESISTIVITIES 

temperature resistivity 
(OK) (fLOcm) observer 

295 12'6* present work (average 
of three specimens) 

295 14·2 G. &B. 
295 12·6 H. 
295 14·6 M.,W.&W. 

275·6 18·2t present work (average 
of two specimens) 

275·6 19·5 G. & B. (interpolated value) 
275·6 18·3 H. (interpolated value) 
282·3 19·9t present work (specimen 

possibly oxidized) 
282·3 20·1 G. &B. 
282·3 18·8 H. (interpolated) 

(For an estimate of accuracy, see text.) 

G. & B.: Guntz & Broniewski (1909). IT.: ITackspill (1910) . M., W. & W . : MacDonald, 
White & Woods (1956). 

* In deducing this value we took for the density of rubidium at 20 °0 the value I·53g/cm3• 

t In deducing these values we took for the density of caesium at 20 °0 the value 1·87 g/cm3 • 

From the values of the ideal resistance we now wish to determine the resistivities. 
The first correction is for the change in dimensions of the specimen with tem
perature; since the thermal expansion data on rubidium and caesium are rather 
uncertain, this procedure can introduce a systematic error (up to t%) into the 
values for the resistivity. However, the results can readily be corrected when more 
accurate volumetric data become available and, for this purpose, we give in 
table 6 the values for the changes in volume with temperature which we have 
assumed. The resistance data so corrected give relative resistivity values. 

To find the absolute values we extrapolate our measured values of relative 
resistivity to the temperature region in which the absolute resistivities are known 
(above O°C). The relative resistivity values are then scaled to have the right 
magnitude; this process involves an extrapolation over a temperature interval of 
about 12 degC for rubidium and about 3 degC for caesium. 
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The resistivity values (effectively at zero pressure) obtained in this way are 
shown in tables 4 and 5. These values normalized to the ice point resistivity are 
compared with the results obtained by other observers in tables 7 and 8. This 
comparison shows that for the most part our values are systematically lower than 
those of previous workers. Take, for example, the data of Meissner & Voigt (1930); 
there is a systematic difference between our results and theirs which increases at 

TABLE 4. THE IDEAL RESISTIVITY OF RUBIDIUM AT ZERO 

PRESSURE, Pi' AND AT CONSTANT VOLUME, pi 

Pi/T * p;/Tt Pi/T * p;/Tt 
T(OK) (10- 8 !l cm/deg) (10-8 !lcm/deg) T(OK) (10- 8 !l cm/deg) (10- 8 !lcm/deg) 

2 0.012 0·01 120 3'538 3.212 

4 0'156 0·16 130 3'57, 3'217 

6 0.403 0·40 140 3.610 3.228 

8 0'708 0·70 150 3'64, 3.228 

10 1'000 1·00 160 3'678 3.236 

12 1.291 1·29 170 3.713 3·24, 
14 1'569 1·57 180 3'746 3'253 

16 1.807 1·81 190 3'783 3.267 

18 2'00, 2·00 200 3'82, 3.286 

20 2.166 2·16 210 3'86, 3'30, 
30 2'688 2·66 220 3'90, 3.327 

40 2.976 2·92 230 3.946 3.346 
50 3'147 3'05, 240 3.986 

60 3.252 3' 126 250 4'00, 
70 3.319 3'161 260 4.072 

80 3'375 3'183 270 4' ll5 

90 3'422 3'196 280 4' 158 

100 3.461 3.203 290 4.208 

llO 3'500 3.207 300 4·28, 

* Random error at all temperatures is ± 0'002 in the units used in the table. The 8Y8tematic 
errors are estimated to be as follows: (a) ± 2 % due to uncertainty in the absolute value of Pi; 
(b) ± t % due to uncertainties in the equation of state of the metal; this decreases at higher 
temperatures; (c) ± 2 % at low temperatures (around 10 OK) due to departures from Mat· 
thiessen's rule; this error should be appreciably smaller than the residual resistivity itself at all 
temperatures; (d) ± 1 % above ca. 140 oK due to oxidation of the specimens (see text). 

t The random errors are similar to those in Pi' The systematic errors in P; include those in PI 
together with a high temperature error of about ± 1 % due to uncertainty in the equation of 
state. 

lower temperatures. Some of this (down to 20·4 oK in rubidium) could be due to 
capillary constraints in the specimens of Meissner & Voigt (cf. Dugdale & Gugan 
1963), but this alone could not account for the differences by factors of 2 or 3 that 
are observed at the lowest temperatures in both rubidium and caesium. This sort 
of difference might be due to cavitation. As we have already emphasized, there is 
a large volume contraction in cooling these two metals from room temperature to 
helium temperatures (nearly 10% in caesium) and in capillary specimens this can 
cause large, unreproducible changes in resistance (see figure 14 of MacDonald & 
Mendelssohn 1950). This sort of behaviour presumably comes about because if the 
stress in the specimen (due to the differential contraction between glass and metal) 
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becomes large enough the metal breaks away from the glass or forms voids which 
can then increase the resistance unpredictably. 

On the other hand it is seen that we get quite good agreement with the results 
of MacLennan, Niven & Wilhelm (1928) on caesium and with limited data of 
MacDonald et al. (1956) on both metals. Both these sets of results were obtained 
with capillary speciniens so that it is not obvious why we should get such good 
agreement. The clue to this may again be cavitation. MacDonald et al. mention 
that in their caesium specimens cavitation may have occurred even at room 

TABLE 5. THE IDEAL RESISTIVITY OF OAESIUM AT ZERO 

PRESSURE, Pi' AND AT CONSTANT VOLUME, P~ 

p./T* p;/T* Pt/T * p;/T* 
T( OK) (10- 811 cm/deg) (10-811cm/deg) T( OK) (10-811 cm/deg) (10-811 cmJdeg) 

2 0'089 0·90 120 5.728 5.287 

4 0'638 0·64 130 5.770 5.287 

6 1.380 1·38 140 5.811 5.290 

8 2.242 2·24 150 5'858 5.290 

10 2.949 2·95 160 5.898 5.300 

12 3'422 3·42 170 5.948 5.308 

14 3'750 3·75 180 6'002 5.319 

16 3'993 3·99 190 6.054 5'33, 
18 4.208 4·21 200 6'Uo 5'347 

20 4'41~ 4'395 210 6.167 

30 4.936 4.887 220 6.226 

40 5.168 5'073 230 6.289 

50 5.31 0 5'161 240 6.356 

60 5'406 5'209 250 6'42, 
70 5'470 5.227 260 6'494 

80 5'530 5.241 270 6'56a 
90 5.587 5'256 280 6·64\ 

100 5'637 5.267 290 6'723 

llO 5.685 5.280 

* The estimated errors, both random and systematic, are similar to those for rubidium except 
that oxidation effects begin at ca. 180 OK and may be rather larger by room temperature. 

temperature (presumably during the solidification process after filling the capillary 
with liquid metal). Moreover, their rubidium and potassium specimens gave quite 
inaccurate values for absolute resistivity and this again suggests that cavitation 
may have occurred. If this is so, then the metal in their specimens may not have 
completely filled the cross-section of their glass capillaries and this might prevent 
the building up of any appreciable negative pressure. This question is of some 
interest because in recent work on the Fermi surfaces of the alkali metals there has 
been considerable uncertainty about the actual lattice parameter of the specimens 
in the helium range of temperatures. The metals have been either coated with 
petroleum jelly (Shoenberg & Stilcs 1964) or held in glass capillaries (Okumura & 
Templeton 1962, 1963) and this introduces uncertainties about the degree of 
constraint in the specimens. The resistivity data seem to indicate that in the lighter 
alkali metals (which do not contract so much on cooling) cavitation is probably 
unusual but much commoner in rubidium and caesium 
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We next wish to derive values of the resistivity as a function of temperature at 
constant density. For this we have to use the results of our measurements of 
resistance under pressure (see following section). Consider first the resistivity at 

TABLE 6. p-V-T VALUES ASSUMED FOR RUBIDIUM AND C.A.ESIUM* 

T(OK) V(T) j V(O) 1 eV) - - - (10- 6 atm- 1) 
V Op T 

- - (10- 5atm-1 ) 1 ('3V) 
V Op T 

atp = 0 at V = Vo 

(a) rubidium 

0 1·000 3·56 3·56 
30 1·003 3·61 3·56 
60 1-009 3·77 3·56 
90 1-016 3·94 3·56 

120 1·023 4·12 3·56 
150 1·030 4·29 3·56 
180 1·037 4·47 3·56 
210 1-044 4·64 3·56 
240 1·052 4·81 3·56 
270 1·059 4·99 3·56 
300 1·066 5·16 3·56 

(b) caesium 

0 1-000 4·40 4·40 
30 1-003 4·46 4·40 
60 1·013 4·75 4·40 
90 1'023 5·13 4·40 

120 1·033 5·40 4·40 
150 1·042 5·72 4·40 
180 1·052 6·05 4·40 
210 1·062 6·38 4·40 
240 1·072 6·71 4·40 
270 1·082 7·03 4·40 
300 1·092 7·36 4·40 

* For full references to the sources of experimental data, see Martin (1965). 

TABLE 7. A COMPARISON OF RESULTS FOR THE IDEAL 

RESISTIVITY OF RUBIDIUM AT ZERO PRESSURE 

p;(T) jpi273'15) 
T(OK) 1 2 3 4 

273·15 1.0000 1.0000 1·000 1·000 
87.81 0'2772 0·268 
77.60 0.241 7 0·233 
20'42 0.438 0.0459 0·038 0.0403 
14.00 0.0219 0.0195 

4·20 {O'OOls 
0.0008 

0.0017 0·0007 0.0006 

I, Justi (1948); 2, Meissner & Voigt (1930); 3, MacDonald et al. (1956); 4, This work. 

a fixed density corresponding to that of the solid at the absolute zero under zero 
pressure. To obtain these values of Pi at any temperature we have worked out from 
thermal expansion and compressibility data (see table 6) the pressure (P') required 
at any temperature to compress the metal to the given density. The change in 
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resistance 6.Ri due to this pressure was then read off from our pressure measure
ments and this together with our original Ri versus temperature curves at zero 
pressure gives R~ the resistance at constant density over the whole temperature 
range. This is then converted to resistivity by a single conversion factor deter
mined from the known resistivity above 0 DC. Values of the resistivity calculated 
in this way are included in tables 4 and 5. 

TABLE 8. A COMPARISON OF RESULTS FOR THE IDEAL 

RESISTIVITY OF CAESIUM AT ZERO PRESSURE 

pt(T)!pt(273-15) 

T(OK) 1 2 3 4 5 

273·15 1·000 1·000 1·000 1·000 1·000 
87.81 0.3022 0·272 
82 0·248 0·253 
77·60 0.2690 0·238 
20·6 0·051 0.051 8 
20.42 0.0576 0.0957 0.051 2 
14.00 0.0329 0.0288 

4.20 0.0016 0.0029 0·0017 0.0021 0.0016 

1, Justi (1948); 2, Meissner & Voigt (1930); 3, MacDonald et al. (1956); 4, McLennan et al. 
(1928); 5, This work. 

To work out p~ (the prime is used to indicate that Pi is evaluated at fixed 
density) at other densities we assumed that the compressibilities of rubidium 
and caesium were independent of temperature at a fixed density. Then we could 
work out the resistance changes at each temperature in a similar way for pressures 
of (p' + 1000) and (P' + 2000) atm and proceed as before. The values of p~ obtained 
in this way are plotted in figures 1 and 2. 

We can illustrate how the ideal resistivity of rubidium and caesium depends on 
temperature in a different way. In this we compare their resistivities (at constant 
density) with that predicted by the Bloch-Grlineisen formula. To do this we 
compare values of (0 In Pi/a In T)v for the actual metal with that deduced from 
the Bloch-Grlineisen function and choose the value of the charaoteristic tempera
ture eo involved in this function to make the two agree at each temperature 
(Kelly & MacDonald 1953). The results showing how eo varies with temperature 
for rubidium and caesium are shown in figure 3. The general behaviour is not 
unlike that of the lighter alkali metals (see I). 

3·3. Pressure dependence of resistance 

Tables 9 and 10 show the variation of ideal resistance of rubidium and caesium 
with pressure at various temperatures. They are smoothed curves of direct readings 
taken with the high pressure apparatus, Matthiessen's rule being applied to 
determine the ideal resistance. 

In the solid helium range, the procedure was to plot curves of variation of 
resistance with temperature at several different pressures; the curves for rubidium 
specimen 3 are shown in figure 4. The residual resistances, indicated by arrows 
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on this diagram were determined by linear extrapolations of plots of R against T5. 
Figure 5 shows a typical set of results obtained in the liquid hydrogen range of 
temperature. It illustrates what happens when the helium, which transmits the 
pressure, solidifies; this is shown by the abrupt increase in slope of the resistance
temperature curve when solidification begins and an abrupt decrease in slope 
again when solidification is complete. 

Rb 

8~-------+--------+1 

6~--------4------j 

]' 
a 
..:: 4~----t-/-
~ 

2f-----F 

100 200 

FIGURE 1 FIGURE 2 

FIGURE 1. The ideal resistivity of rubidium as a function of temperature. Curve 1 is at constant 
pressure (p = 0); the rest at constant density. The densities are those of the solid at OOK 
and the following pressures: curve 2, zero; curve 3, 1000atm; curve 4, 2000 atm. The 
dashed line is an interpolation between our results at lower temperatures and a point based 
on Bridgman's data at the ice point. 

FIGURE 2. The ideal resistivity of caesium as a function of temperature. Curve 1 is at constant 
pressure (p = 0); the rest at constant density. The densities are those of the solid at 0 OK 
and the following pressures: curve 2, zero; curve 3, 1000 atm; curve 4, 2000 atm. The dashed 
line is an interpolation between our results at lower temperatures and a point based on 
Bridgman's data at the ice point. 

Table 9 shows the effect of pressure on the resistance of two samples of rubidium 
of very different purity; this enables one to test the validity of Matthiessen's rule for 
determining the pressure coefficient of ideal resistivity at low temperatures. Consider 
in particular the results obtained at 4·2 OK. Specimens 1 and 3 which are of similar 
purity give concordant results, whereas specimen 5 which was much less impure (by 
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a factor of 5) gives an appreciably bigger pressure dependence for Pi' The initial 
pressure coefficients for the specimens of different purity are not too different but 
the difference appears to increase with pressure. Since the departures from 
Matthiessen's rule are probably mainly due to different anisotropies of r(k) for 
phonon and impurity scattering, one can only assume that these are changing 

60. 

~ 
o 40. 

20. 

0. 

I~.l Rb ~r 
/ II" ,I I H"I 

If "~-r ~t 
I 

~l~!.-c-.H1 Cs 

: to'fFt °HH·L4 t t P ! ! ........ 

f c-f 

40. 

temperature (OK) 

80. 

FIGURE 3. Values of (}c as a function of temperature for rubidium and caesium. Be is obtained 
by comparing the ideal resistivity of the metal with that predicted by the Bloch-Griineisen 
relation. 

differently in the two sets of specimens. This does, however, show that in this 
region the pressure coefficients are as yet not very reliable. At higher tempera
tures, the results from specimens of different purity agree well (cf. the results on 
rubidium specimens 1, 3 and 5 near 20 OK). 

3·3·1. The minimum in the R-p curve for caesium 

Bridgman (1925) found that the resistance versus pressure curve of caesium 
went through a minimum (cf. figure 7); at 0 °C this minimum occurs at a pressure 
of about 4000 atm. Since our measurements extend only to 3000 atm, we do not 
observe this minimum, but we can make some deductions from our results about 
its temperature dependence. 
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Figure 2 shows that at three different densities the ideal resistivity of caesium 
is directly proportional to the absolute temperature down to quite low tempera-
tures. It is reasonable to suppose that this would also be true at the slightly higher 
densities corresponding to and beyond that at which the minimum occurs. If this 
were so then the minimum would be associated with one particular density at all 
temperatures, at least in the region where the ideal resistivity (at fixed density) is 
directly proportional to T. This enables us to estimate how the pressure at which 
the minimum occurs changes with temperature. 

TABLE 9. THE PRESSURE DEPENDENCE OF THE ELECTRICAL 
RESISTANCE OF RUBIDIUM 

The listed values give R.(P)/R.(p = 0). 

pressure 4·2 °K 4.2 oK 12·3 °K 14·3 oK 20.3 oK 20·3 °K 20·7 oK 
(atro) {Rb 1,3} {Rb5} {Rb I} {RbI} {Rb I} {Rb3} {Rb5} 

0 1·00 1·00 1·00 1.000 1.000 1.000 1.000 

250 0·95 0.950 0'959 0.960 0.959 

500 0·92 0·90 0·92 0.920 0.922 0'922 0'92, 
750 0·88 0'882 0 ' 886 0'885 0.887 

1000 0·85 0·81 0'85, 0'851 0'85, 
1250 0'820 0.820 0.821 

1500 0·80 0·69 0'790 0.790 0'791 

2000 0·72 0·59 
2500 

29'5 °K 55·9 oK 67.9 oK 78'4 °K 78'8 °K 79'5 °K 90.7 oK 
{RbI} {Rb I} {Rb I} {Rb I} {Rb5} {Rb3} {RbI} 

0 1'000 1.000 1.000 1.000 1.000 1.000 1.000 

500 0'92, 0·907 0.930 0'929 0.929 0.929 0.928 
1000 0.858 0'866 0.867 0'86, 0'866 0'86, 0'86, 
1500 0'799 0.808 0.811 0'808 0.81 2 0.808 0 '808 
2000 0.744 0'758 0.760 0'758 0-761 0'759 0'758 
2500 0.701 0.711 0'715 0'71, 0'718 0'715 0'71, 

113·2 oK 160'5 °K 195-0 oK 195.3 oK 230.9 oK 273·2°K 273'2°K 
{RbI} {RbI} {RbI} {Rb3} {RbI} {Rb2} {*} 

0 1.000 1.000 1.000 1'000 1.000 1.000 1'000 

500 0-92, 0.925 0-92, 0.946 0'916 0.911 

1000 0.859 0.858 0.859 0-87, 0'84, 0.838 0'85, 
1500 0'802 0'800 0.802 0-81, 0'782 0.777 

2000 0'752 0-749 0'750 0.761 0'729 0'725 0'739 

2500 0.707 0.705 0'705 0'716 0'68, 0.676 

* P. W . Bridgman. 

On the basis of our assumptions about the equation of state of caesium we 
estimate that the pressure required to keep the density of the metal constant 
increases by about 2·5 atmjdegO around room temperature. So we would expect 
the pressure of the minimum to change by a similar amount. Between 0 and 
100 °0 Bridgman (1925) has measured this pressure directly. If we take into 
account only his reproducible measurements on bare wires and ignore his data on 
capillary specimens or the values which were quite different with increasing and 
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decreasing pressure we find that our estimate is consistent with Bridgman's 
findings. The change in pressure at the minimum is not very big and it is difficult 
to measure accurately but from the general agreement between our findings and 
Bridgman's it seems probable that the minimum occurs at the same density at all 
temperatures from about 40 OK up to near the melting point. 

pressure 
(atm) 

o 
500 

1000 
1500 
2000 

o 
500 

1000 
1500 
2000 
2500 

o 
500 

1000 
1500 
2000 
2500 

TABLE 10. THE PRESSURE DEPENDENCE OF THE ELECTRICAL 

RESISTANCE OF CAESIUM AT VARIOUS TEMPERATURES 

3'2°K 
{Cs 1, 3} 

1·00 
0·88 
0·84 
0·75 
0·72 

18·0 0 K 
{Cs I} 

1.000 
0.942 

0.890 

0'843 
0.804 

78·3 °K 
{Cs I} 

1'0000 
0.9443 

0'897, 
0'861, 
0'832, 
0'8083 

The listed values give R ;(p) /Rj(P = 0). 

4.2 oK 
{Cs I} 

1·00 
0·94 
0·88 
0·82 
0·75 

18·0 0 K 
{Cs3} 

1.000 
0.941 
0.890 

0'848 

0'810 

79·3 °K 
{Cs 3} 

1'0000 
0.9441 

0.8978 

0'8609 

0'8318 

0'8095 

4·2 °K 
{Cs 3} 

1·00 
0·91 
0·85 
0'79 
0·75 

20.4 oK 
{Cs I} 

1.000 

0.940 
0.887 

0'843 

0'809 

89·8 °K 
{Cs I} 

1'0000 

0.9436 

0.8985 

0'8624 
0.8334 

0'8105 

14.0 oK 
{Cs I} 

1.000 
0.932 

0'871 

0'827 

0.792 

20'6 °K 
{Cs3} 

1.000 
0.951 

0'88G 

0'846 

0'810 

159·3 °K 
{Cs I} 

1'000 

0.943 

0' 894 

0'858 
0.827 

0'805 

* P. W. Bridgman. 

4. DISCUSSION 

14.0 oK 
{Cs3} 

1.000 

0'942 

0'885 

0.836 

0'79, 

29.7 OK 
{Cs I} 

1.0000 

0.9328 

0'8798 

0.8444 

0.8153 

0'7898 

195'2 °K 
{Cs I} 

1.000 

0'934 

0.882 

0 '844 

0'815 
0.795 

4·1 . Theoretical calculations of Pi 

16·0 0 K 
{Cs I} 

1'000 
0.934 

0'879 

0.837 

0.800 

48·0 oK 
{Cs I} 

1.0000 
0.9445 

0.8979 

0'8615 

0'8324 

0'8088 

259'4 °K 
{Cs I} 

1.000 

0'91, 
0.852 

0' 799 

0.764 

0'736 

16'O OK 
{Cs 3} 

1.000 
0.942 
0.889 

0'844 

0'806 

65'5 °K 
{Cs I} 

1.0000 

0.9454 
0.921 9 

0'8631 

0.8338 

0'8109 

273'2 °K 
{*} 

1.000 

0.927 

0'882 

0.815 

0'771 

0'751 

There are three main elements to be considered in the calculation of Pi: (1 ) the 
perturbing potential; (2) the dispersion relations of the lattice waves (more 
briefly the phonon spectrum); and (3) the Fermi surface. Let us consider each 
of these briefly. 

4·1·1. The perturbing potential 

Following the original work of Bloch (1928, 1930), the most important calcula
tion from first principles of the ideal resistivity of the monovalent metals was that 
due to Bardeen (1937). In this the perturbing potential which scatters the con
duction electrons was calculated by a self-consistent method. This potential is 
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considered as the sum of two terms, (1) the change in the potential due to the 
displacement of the ions, and (2) the change in the potential of the valence electrons 
which move so as to screen the ionic potential produced by (1)'. It turns out that, 
at least to the extent that electrons can be treated as effectively free, the effect 
of the screening of the conduction electrons can be written as a factor which simply 
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FIGURE 4. Resistance of rubidium specimen 4 at different pressures as a function of tempera
ture below 4 °K:Q,p = o (initially); .,p = o (finally); \l ,P = 640atm; 6,p = 1360atm; 
0 , p = 2080 atm. The pressures were applied by means of solid helium. 

FIGURE 5. Resistance of caesium specimen 1 at different pressures as a function of temperature 
in the hydrogen range of temperatures. The approximate pressures are as follows: 
D, 2140atm; 6, 1670atm; 0, 1610 to 1240atm; \l, ll20 to 990atm; x, 650atm; 
0, 150atm. The top two ourves correspond to the fluid phase of helium and the bottom 
two to the solid phase only. In the middle two curves a change of phase takes place and this 
causes the slope of the curves to change. 

multiplies the matrix elements associated with the unscreened ionic potential. 
In his calculations Bardeen used a Debye approximation for the phonon spectrum 
since at the time no other information was readily available; in addition, he con
sidered only spherical Fermi surfaces. Nevertheless, his approach has remained 
the basis of nearly all the subsequent developments. 

4·1·2. The phonon spectrum 

The recurring theme of much of the work since Bardeen has been the over
riding importance ofumklapp processes in the alkali metals (Ziman 1954; Bailyn & 
Brooks 1956; Bailyn 1960). An umklapp process tends to be more important than 
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a normal process for electrical resistivity because it can produce scattering through 
larger angles. This is particularly important at low temperatures where normal 
processes can cause only small angle scattering. 

It turns out that the elastic properties of the alkali metals are very strongly 
anisotropic (this point has been particularly stressed by Bailyn 1960) and this can 
have the effect of enhancing umklapp scattering, particularly at low temperatures. 
Indeed, it is mainly for this reason that umklapp processes are found to predominate 
in the resistivity of the alkali metals right down to the lowest temperatures of 
practical interest (Bailyn 1960). 

In table 11 we list values of the elastic anisotropy parameter 0«/2(011 - 012 ) for 
those alikali metals for which elastic measurements have been made. (We are 
referring now only to the b.c.c. phases.) For an isotropic material the parameter 
would be 1. The square root of this parameter measures the ratio of the velocities 
of shear waves in the (100) and (110) directions. From the values in the table it is 
seen that in some of the metals these velocities can differ by a factor of as much as 3. 

TABLE 11. ELASTIC ANISOTROPY PARAMETERS IN THE ALKALI METALS 

2044 /(011-012) 

metal 

lithium 
sodium 
potassium 
rubidium 
caesium 

Bailyn's* 
values 

9·60 
1l·06 
10·27 
10·15 

9·77 

experimentally 
observed 

9·35 
7·14 
6·71 

* Bailyn (1960). 

observer 

Nash & Smith (1959) 
Daniels (1960 ) 
Smith & Smith (1964) 

Quite recently, Woods, Brockhouse, March, Stewart & Bowers (1962) have deter
mined directly the phonon dispersion relations in sodium by means of thermal neutron 
diffraction and this has stimulated a number of theoretical studies of the resistivity 
of the lighter alkali metals, in particular sodium. These calculations produce fairly 
good agreement with experiment and we shall refer to them later. 

4·1·3. The Fermi surface 

Table 12 summarizes the experimental information about the Fermi surfaces of 
the alkali metals; it is seen that in sodium and potassium the surfaces are effectively 
spherical, in rubidium nearly so, while in lithium and caesium the surfaces are 
appreciably different from spheres. Ham (1962) has made theoretical calculations 
of the properties alld shapes of the Fermi surfaces of the alkali metals. His calcu
lations overestimate the distortions of the surfaces but they give the right qualita
tive sequence of distortion through the series; in addition, Ham has calculated 
how the properties of the Fermi surfaces should change with volume. Although 
again these calculations may be quantitatively in error, it seems probable that 
they will give the correct qualitative picture. 

Attempts to infer the shapes of the Fermi surfaces from various physical 
properties of the metals have tended to ignore elastic anisotropy and, perhaps for 
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this reason, have also overestimated the distortion of the Fermi surfaces (Cohen & 
Heine 1958; Ziman 1959; Dugdale 1961; Collins & Ziman 1961). The important 
point is that elastic anisotropy and distortion of the Fermi surface can produce 
similar effects on transport properties and without further knowledge their effects 
are hard to distinguish. 

Bearing in mind these ideas, let us now look at the experimental results . To 
help in understanding the heavier alkali metals we shall find it useful to make 
some comparisons between all the alkali metals, particularly since we now have 
comparable experimental data on the resistivity of all of them. 

TABLE 12. ANISOTROPY OF THE FERMI SURFACE IN THE ALKALI METALS 

metal 
lithium 
sodium 
potassium 
rubidium 
caesium 

maximum radial 
distortion from a sphere 

about 5% 
probably < 5 x 10- '} 

15 x 10- ' 
1% 
about 5% 

observer 

Shoenberg & Stiles (1964) 

Okumura & Templeton 
(1965) 

4·2. The magnitude of the resistivity 

Bailyn has calculated the magnitude of the resistivities of all the alkali metals. 
In table 13 we make a comparison of these calculated values with the most recent 
experimental values. It is seen that apart from lithium the agreement is every
where within a factor of 2 and for sodium, potassium and rubidium is much closer 
still. Bailyn assumed in his calculations that the Fermi surfaces were spherical, 
although he recognized that for lithium this was a poor approximation. More 
recent calculations of the resistivity of lithium by Hasegawa (1964), which take 
account of the distortion of the Fermi surface, have improved the agreement for 
this metal. The comparatively small distortions of the Fermi surfaces of rubidium 
and caesium, which we now know to exist, might be enough to account for the 
remaining discrepancies between the theoretical and experimental values of Pi in 
these metals. 

TABLE 13. RESISTIVITIES ({-to. CM) 

lithium sodium potassium rubidium caesium 
temperature (OK) 297 125 70 211 158 
P (theor.)* 2·0 1·4 1·4 5·6 5·0 
p(exp.) (p = 0) 9·4 1,56 1.17 8·1 9·4 
p(exp.) (V = Volt 9·5 1,49 1·ls 6·9 8·5 

* Bailyn (1960). 
t Vo is the molar volume of the solid at 0 OK under zero pressure. 

4·3. How the resistivity depends on temperature 

Figures I and 2 show that if we plot the resistivity as a function of temperature 
at constant density, the resistivity at high temperatures for both rubidium and 
caesium is linear and very closely proportional to the absolute temperature. This 
is true both at the density corresponding to zero pressure at 0 OK and at the two 



Electrical resistance of rubidium and caesium 397 

higher densities for each metal. There is thus no anomalous behaviour in the 
high temperature resistivity of rubidium as described by MacDonald (1952). The 
effects that he found can almost certainly be ascribed to capillary constraints in 
his specimens. 

Bailyn (1960) has calculated the temperature dependence ofthe resistivity of all 
the alkali metals. He found reasonable agreement with experiment for caesium 
and poor agreement for the others. (For lithium the agreement was good but, as 
already mentioned, the model used was not strictly appropriate to this metal.) 
Bailyn was inclined to attribute this poor agreement to the phonon spectra he 
used. The values he adopted for the anisotropy parameters are shown in table 11, 
together with the experimental values where these are known. It seems that his 
values of the anisotropy for sodium and potassium were indeed too large and this 
may account for much of the discrepancy. The more recent calculations of Bross & 
Holz (1963) and of Hasegawa (1964) used the neutron data on sodium and the 
specific heats as a check on their calculated dispersion relations. They then found 
reasonably good agreement with experiment for the temperature dependence of the 
resistivity of sodium, potassium and lithium. (For lithium the fact that the Fermi 
surface is not spherical had to be taken into account.) 

Working more directly from the neutron data, Darby & March (1964) also found 
reasonable agreement for sodium. Still more recently Greene & Kohn (1965) have 
calculated the temperature dependence of the resistivity of sodium using the 
neutron data directly to give information about the motion of the ions. They have 
made what are probably the most refined calculations so far and find some dis
agreement with experiment. They discuss whether the discrepancy could be due 
to non-equilibrium of the phonons, although they think this unlikely. By com
paring their results with those of Darby & March they conclude that anharmonic 
effects are important, in particular the change in elastic constants with tempera
ture, and when they take this into account they find agreement with experiment 
within an accuracy of about ± 20 %. 

It seems therefore that although the agreement for sodium is not as complete as 
might have been expected these calculations are generally speaking successful. 
We may therefore expect that when we know the phonon dispersion curves for 
rubidium and caesium it will then be possible to calculate successfully the tem
perature dependence of their resistivities. 

4·4. How the resistivity depends on pressure 

At high temperatures (T > ()o) we may think of the resistivity as proportional 
to the square of the amplitude of the lattice vibrations and write for the ideal 
resistivity p" at temperature T /M() • Pi = KT 2, (1) 

where M is the mass of the ions, () is the characteristic temperature of the lattice 
and K represents all the factors associated with the interaction of the electrons 
with the lattice waves. We may then write 

(
8 In Pi) d In K 
a In v T = 21'0 + d In V · 
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In this we have assumed that the changes in the amplitude of the lattice vibrations 
can be taken account ofthrough the Griineisen parameter Yo' In table 14 we have 
listed the values of d In Kid In V calculated in this way. Yo has been evaluated 
from the thermal expansion, compressibility and specific heat of the solid. For 
rubidium and caesium some of these data are rather uncertain. 

At low temperatures the ideal resistivity varies more strongly with temperature 
than at high temperatures (approximately as To at the lowest temperatures). 
This means in effect that Pi depends more strongly on the amplitude of the lattice 
vibrations at low temperatures than at high. We may therefore expect that this 
will also show up in the pressure dependence of Pi (since pressure also changes the 
amplitude of the lattice vibrations) and that the pressure coefficient of Pi will 

TABLE 14 

8Inp, _~(8V) ~(8V) 
8p V 8p T 8Inp, V aT p dInK dInKt 

O°C O°C 8In V O°C dIn V dIn V 
metal (10-5 atm- 1) (10-5 atm-1) O°C (10-5 per °C) Y~ (expt.) (theory) 

lithium 
p=O +0·43 0.875 -0·49 14} 0'90 {~2.3} -3·7 V =Vo 

sodium 
p=O -7·3 1·58 4·6 21} 1-3 {2'0} 1·8 
V=Vo -6·2 HO 4'48 1·8 

potassium 
p=O -19-1 3·43 5·6 25} 1·3 rO} 1·9 
V=Vo -15·8 2·82 5·6 3·0 

rubidium 
p=O -21 5'0 4· 24} {2·s ~ 1'0 V=Vo -17 3'6 4·, 2·, 

caesium 
p=O -22 7.

1 3.1 29} 1'0 {1'1 

V=Vo -14 4.
4 3.2 1'2 

* The data are not available to calculate YG at V = Vo so we have assumed that the values 
at p = 0 and at V = Vo are the same. 

t Hasegawa (1964)· 

become more negative at low temperatures. This effect can be seen in figure 6 
which shows how the pressure coefficient of ideal resistivity (at constant density.) 
varies with temperature for all the alkali metals. (The data for lithium, sodium 
and potassium are taken from I .) As already stressed, the very low temperature 
values tend to be uncertain because of departures from Matthiessen's rule. 
Nevertheless, the tendency to become more negative at low temperatures in 
rubidium and caesium (as in the other metals) is clearly evident and qualitatively 
reliable. At higher temperatures the coefficient tends to be constant; the changes 
near room temperature may be real or they may be only a consequence of using 
slightly wrong data for the equation of state. 

To show how the resistivity of the alkali metals varies with pressure over a 
wider pressure range, we show in figure 7 the relative resistivity p/Po as a 
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function of relative volume V /Vo for all the alkali metals at 0 °0. The data are 
taken from Bridgman (1925).* Po is the resistivity at the volume Vo at whichp = 0 
and P is the resistivity cOITesponding to the volume V. Let us now consider how 
far theory can account for the pressure dependence of the ideal resistivity. 
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FIGURE 6. The pressure coefficient of the ideal resistivity of the alkali metals as a function of 
temperature. The data for lithiwn, sodiwn and potassiwn are taken from I; the solid points 
are from Bridgman (1925). 

4+ 1. Rubidium 

If we look at table 14 we see that dInK/dIn V for rubidium is quite similar in 
magnitude to that for sodium or potassium; indeed the general dependence 
of resistivity on volume (figure 7) is rather similar for sodium, potassium and 
rubidium over the first 25 % change in volume. To understand the behaviour 
of rubidium, therefore, let us look briefly at how Hasegawa (1964) has interpreted 
the pressure dependence of Pi in sodium and potassium. Hasegawa assumes that 
the Fermi surfaces of these metals are spherical (see table 12) and that they remain 

* Bridgman (1952) has made measurements on the resistivity of the alkali metals up to 
considerably higher pressures (nominally up to 100 kbar). More recently Stager & Drickamer 
(1963) have made measurements up to 500kbar on the four lighter alkali metals and have 
found many strange and complicated effects. Here we have concentrated on Bridgman's 
results at lower pressures since they are the only ones which can be compared directly with the 
present work. Moreover, they are in the region where we have the best hope of a quantitative 
comparison with theory. 
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so under modest pressures (cf. Ham 1962). In addition he assumes that the 
anisotropy of the phonon spectrum does not change significantly with volume; 
as far as one can tell from the elastic constants this is true (see Daniels (1960) for 
sodium and SInith & SInith (1964) for potassium). 

0·2!-,,-____ ----:;""=-____ ----:::'-;;-_---' 
10 0-9 0'8 

VIVo 

FIGURE 7 . Relative resistivity plotted against relative volume for the alkali 
metals at O°C (from the data of Bridgman (1925))' 

Since the anisotropy of the phonon spectrum and that of the FerIni surface do 
not change, and since the relative size of the FerIni surface and Brillouin zone 
does not alter under compression, the geometry in k space of all the phonon 
electron scattering processes is unchanged by the volume change. This means that 
the proportions of normal and umklapp processes are likewise unchanged. 

Hasegawa finds that the major part of the change with volume of the parameter 
K (equation (1)) is due to the change in the matrix elements theIllSelves. In 
essence, the increase in the kinetic energy of electrons on compression diminishes 
the effect of the scattering potential. Hasegawa finds quite good numerical 
agreement with experiment; see table 14. 

We know that although rubidium has a slightly distorted FerIni surface it is 
nevertheless nearly spherical. In the absence of other information, therefore, it 
seems probable that the sort of considerations already applied to sodium and 
potassium Inight be sufficient to expla.in the pressure dependence of Pi in rubidium. 
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4-4-2. Oaesium 

In caesium the Fermi surface is appreciably distorted (see table 12). According 
to Ham's calculations the Fermi surface of caesium distorts under pressure, 
thereby causing those parts of the surface near the zone boundaries to get nearer. 
This could then account for the minimum in the resistivity-pressure curve 
illustrated in figure 7. The general idea is that the distortion of the Fermi surface 
enhances the probability of umklapp processes; presumably this effect eventually 
overrides that due to the diminishing amplitude of the lattice vibrations and other 
effects which tend to reduce the resistivity. (Hasegawa has shown that this kind 
of explanation can account for the anomalous pressure dependence of Pi in 
lithium.) However, as we emphasized earlier, there could be changes in the 
anisotropy of the phonon spectrum which would have a similar effect. To find out 
which effect is more important we need further experiments to find out both how 
the Fermi surface and how the elastic constants change with pressure. 

We are grateful to our colleagues in the laboratory for many valuable discussions . 
We would also like to thank Dr M. Bailyn and Dr A. M. Guenault for reading the 
manuscript and Miss B. A. Cotton for help with the calculations. We are very 
much indebted to Mr A. A. M. Croxon for his help in the experiments and to 
Mr F. W. Richardson for supplying liquid helium and hydrogen. 
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